\qquad Hour \qquad

Complex Circuit Practice Worksheet

Circuit \#1

1. Find the total resistance. (Do parallel resistors first-get an answer, then add the series ones) (5750 Ω)
2. Find the total current. (Round to 3 decimals!) (0.174 A)
3. Find the voltage drop for any resistors in series. (There should be 2 series resistors) $\left(\Delta \mathrm{V}_{1}=261 \mathrm{~V}, \Delta \mathrm{~V}_{4}=348 \mathrm{~V}\right)$
4. Find the voltage lost through resistor 2. (Remember- each circuit path adds up to the total voltage of the battery) $\left(\Delta \mathrm{V}_{1}+\Delta \mathrm{V}_{2}+\Delta \mathrm{V}_{4}=1000 \mathrm{~V}\right)$
5. Find the voltage lost at R_{3}. $\left(\Delta V_{1}+\Delta V_{3}+\Delta V_{4}=1000 \mathrm{~V}\right)$
6. Solve for the currents through the rest of the resistors and put your answers in the box.
7. What is $\mathrm{I}_{2}+\mathrm{I}_{3}$? Does it equal the total current? It SHOULD!

$\mathrm{l}_{1}=$	(0.174 A)
$\mathrm{I}_{2}=$	(0.130 A)
$\mathrm{I}_{3}=$	(0.043 A)
$1_{4}=$	(0.174 A)
$\Delta \mathrm{V}_{1}=$	(261 V)
$\Delta \mathrm{V}_{2}=$	(391 V)
$\Delta \mathrm{V}_{3}=$	(391 V)
$\Delta \mathrm{V}_{4}=$	(348 V)

\qquad Hour \qquad

Complex Circuit Practice Worksheet

Circuit \#2

1. Find the total resistance. (R_{3} and R_{4} are in series with each other but in parallel with R_{2}, so do $\frac{1}{300}+\frac{1}{(400+200)}$, get an answer and then add the two resistors that are in series.) $300 \quad(400+200)$ (1,000 Ω)
2. Find the total current. (Use the total voltage and total resistance) (1.0 A)
3. Find the voltage drop for any resistors that are in series.
$\left(\Delta \mathrm{V}_{1}=500 \mathrm{~V}, \Delta \mathrm{~V}_{5}=300 \mathrm{~V}\right)$
4. Find the voltage lost at R_{2} and then the current through it. $\left(\Delta V_{1}+\Delta V_{2}+\Delta V_{5}=1000 V\right)$
5. What is the voltage left to be lost through R_{3} and R_{4} ?
6. Use this voltage and their combined resistance to find the current through R_{3} and R_{4}. (It's the same).
7. Find the voltage of R_{3} using the current you just found.
$\mathrm{I}_{1}=$
(1.0 A)
$I_{2}=$
(0.667 A)
$1_{3}=$
(0.333 A)
$1_{4}=$
(0.333 A)
$\mathrm{I}_{5}=$
(1.0 A)
$\Delta \mathrm{V}_{1}=$
(500 V)
$\Delta \mathrm{V}_{2}=$
(200 V)
$\Delta V_{3}=$
(133.2 V)
$\Delta \mathrm{V}_{4}=$
(66.6 V)
$\Delta \mathrm{V}_{5}=$
(300 V)
8. Find the voltage of R_{4}.
9. What is $\Delta \mathrm{V}_{1}+\Delta \mathrm{V}_{2}+\Delta \mathrm{V}_{5}$? Does it equal $\Delta \mathrm{V}_{1}+\Delta \mathrm{V}_{3}+\Delta \mathrm{V}_{4}+\Delta \mathrm{V}_{5}$? Explain why it should!
